
Stepping Up to Integrative Questions on CS1 Exams

Daniel Zingaro
Ontario Institute for Studies in

Education
University of Toronto

daniel.zingaro@utoronto.ca

Andrew Petersen
Dept. of Mathematical and
Computational Sciences

University of Toronto
Mississauga

andrew.petersen@utoronto.ca

Michelle Craig
Dept. of Computer Science

University of Toronto
mcraig@cs.toronto.edu

ABSTRACT
In this paper, we explore the use of sequences of small code
writing questions (“concept questions”) designed to incre-
mentally evaluate single programming concepts. We report
on a study of student performance on a CS1 final examina-
tion that included a traditional code-writing question and
four intentionally corresponding concept questions. We find
that the concept questions are significant predictors of per-
formance on both the corresponding code-writing question
and the final exam as a whole. We argue that concept ques-
tions provide more accurate formative feedback and simplify
marking by reducing the number of variants that must be
considered. An analysis of responses categorized by the stu-
dents’ previous programming experience suggests that inex-
perienced students have the most to gain from the use of
concept questions.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Computer and In-
formation Science Education

General Terms
Measurement

Keywords
novice programming, exams, CS1

1. INTRODUCTION
Learning how to program requires understanding a chal-

lenging set of concepts and skills, each of which requires
significant time and effort to develop. In an introductory
programming course, each student’s programming abilities
develop gradually over the term, and as these abilities be-
come more robust, the student is able to undertake and com-
plete increasingly complex tasks. The ability to handle these
tasks is related to self-efficacy, so providing structured, accu-
rate feedback and acknowledging and rewarding progress are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

crucial. However, assessments in introductory programming
often require students to complete large pieces of code, and
the danger is that students who cannot successfully com-
plete a program will be unable to identify how much they
do know and where they need to improve.

The way in which a student represents a problem has a di-
rect bearing on the problem’s difficulty for that student [2].
Both novices and experts begin solving a problem by de-
ciding to which “category” the problem belongs, then use
knowledge associated with that category to form a solu-
tion. Unfortunately, novices often categorize by using sur-
face features of the problem, rather than an understanding
of the underlying principles or core concepts. In a physics
study, novices (first-semester mechanics students) grouped
conceptually-unrelated problems based on similar objects or
physics terms in the problem text [2]. A corresponding study
in computing [12] found similar results: when given a list
of 27 problem specifications and asked to sort them based
on solution type, novices grouped them by application area
(e.g., business, operating systems), whereas experts grouped
them on the basis of the algorithm required in their solution.

More recently, it has been argued that students have dif-
ficulty seeing the “big picture” of a problem, tending instead
to focus on individual components or line-by-line explana-
tions [5, 10]. According to the SOLO taxonomy [1], such
students are working at a multistructural level rather than
a relational level. For example, students are often unable
to explain the purpose of a small piece of code, even when
presented in multiple choice format [13].

That students often evoke suboptimal problem represen-
tations and fail to abstract from the given problem state-
ment suggests a particular difficulty with large, integrative
code-writing questions on tests and exams. Due to the high
proportion of such questions, our final exams may not afford
students a reasonable opportunity to demonstrate what they
know. Code-writing questions intended to target specific
concepts may involve many more concepts than expected,
and fragile understanding of any of these concepts leads to
poor performance overall [7]. Here, we contend that code-
writing questions are difficult for novices because they re-
quire the students not only to use many concepts, but also
to know which of those concepts to use in the first place.

In this paper, we consider an alternative to large, inte-
grative code-writing questions: sequences of small questions
that target individual concepts by asking students to write
fragments of code. We argue that such questions allow for
more fine-grained measures of student ability, and that they

can serve as powerful indicators of performance on integra-
tive questions.

2. RELATED WORK
Using published lists of CS concepts [9, 4], Petersen et

al. [7] investigated the number of concepts embodied in typ-
ical CS1 final exam questions. In a sample of fifteen CS1
final exams, the authors found that 59% of exam marks
were devoted to code-writing questions. On average, each
such question required students to understand and use four
“significant” concepts (excluding, for example, fundamental
syntactic and structural concepts). It appears that program-
ming questions are, at least in terms of the number of con-
cepts, more difficult than instructors expect.

In a similar study, Sheard et al. [11] sought to develop a
classification scheme with which to categorize CS1 exams on
a number of dimensions. The authors found that it was quite
difficult to agree on whether a question was easy, medium,
or hard. Furthermore, the authors tended to identify large
numbers of concepts per question; they provide an anecdote
describing the identification of fourteen topics for a single
multiple choice question. These results therefore show that
other question styles can also test students simultaneously
on many topics.

As CS1 teachers, our goal is to help students ultimately
write code. Yet, code-writing has been found to be the most
difficult of a hierarchy of tasks that includes code reading
and tracing, explaining, and writing [15]. Researchers have
therefore investigated the utility of these other types of ques-
tions in terms of predicting performance on code-writing
questions. For example, Lopez et al. [6] found in a final
exam that performance on two types of questions — tracing
code containing a loop, and explaining code — accounted for
46% of the variance exhibited in the code-writing portion.
In a similar study, Venables et al. found that “explain” ques-
tions accounted for 49% of the variance on the writing ques-
tions, but that much of this predictive power is restricted
to students who received maximum points on the “explain”
questions. When these students were removed, only 6% of
variance was explained [14]. Tracing questions accounted for
a similar percentage of variance, but in contrast to the “ex-
plain” questions, the linear relationship applies to students
who fall below a certain threshold on the tracing questions.
That is, those who do poorly on tracing do poorly on code-
writing, but doing well on tracing does not imply doing well
on code-writing.

Parsons problems have also been suggested as a tool to
assess requisite code-writing knowledge. In a Parsons prob-
lem, students are provided with a random permutation of
the lines of code required to solve a problem and must re-
order that code correctly. Often, a superset of the code lines
is provided, where each line must be selected from a pair of
similar lines. Research has found that performance on Par-
sons problems is highly correlated with code-writing but not
with code-tracing [3]. In addition, inter-rater reliability on
marking a Parsons problem was substantially higher than
agreement when marking a code-writing question. Rubrics
for Parsons problems require fewer cases than code-writing
rubrics and have better-defined marking criteria.

The ease and accuracy by which Parsons puzzles can be
marked suggests that such puzzles can serve as a source of
consistent feedback for students. Yet, there is evidence that
solving a Parsons puzzle does not necessarily mean that stu-

dents can write code. In a qualitative interview study, stu-
dents were given a Parsons puzzle and, once they solved
it correctly, were asked to write that solution code from
scratch. Many students were unable to do so, suggesting
that heuristic or contextual cues can be used to solve a Par-
sons puzzle without fully understanding the solution [3]. In
addition, since the code is already “on the page”, students
are not themselves writing any code.

In this paper, we are interested in the use of focused code-
writing tasks where students write small amounts of code.
Our goal is to be able to test concepts in relative isolation,
limiting larger design or problem-solving requirements. We
are also interested in providing consistent and accurate for-
mative feedback to students about their mastery of individ-
ual concepts.

3. STUDY CONTEXT
In the fall of 2010, we conducted a study to investigate

the utility and appropriateness of small code-writing ques-
tions on CS1 written examinations. Our goal was to test
understanding of single concepts (such as being able to loop
over a list, use an if-statement, or use variable assignment)
with very little distraction or dependence on other concepts.
However, topics in CS1 are graduated in the sense that it is
hard to imagine being able to write code that uses an ac-
cumulator without first understanding a looping structure.
Therefore, when we could not target what we considered to
be an important concept directly, we created several gradu-
ated questions leading up to that concept. Each such ques-
tion contains a short statement of the problem and typically
requires one to five lines of code. We refer to these ques-
tions as concept questions and, in some cases, labeled
them with the concept being evaluated.

Our full study evaluated responses on term test and fi-
nal exam questions from four CS1 courses with a total of
642 consenting undergraduate students. Each student pro-
vided information about their previous programming expe-
rience and their intentions to major in CS. The exams and
tests included concept questions and standard code-writing
questions, as well as a mix of code-explaining and tracing
questions.

This paper reports on five questions (one code-writing and
four concept questions) on one final exam. The concept
questions were intentionally written to match the concepts
tested in the code-writing question. In addition, the stu-
dents had encountered similarly-styled concept questions on
a test given earlier in the term, which should reduce any
effect caused by unfamiliarity with a new type of question.

The exam was graded out of 73 marks, including 11 marks
for concept questions, 22 marks for tracing, 30 marks for
code-writing, 3 marks for code-explaining, and 6 marks for
sorting algorithms. Of the 193 students initially registered in
the course, 112 (58%) provided consent to include their data
in the study. A total of 123 students completed the term
work and final exam; of these, 77 (63%) provided consent.
Our consenting subset averaged 70% on the exam; the entire
class averaged slightly lower at 67%. All questions on the
exam were graded by the course instructor.

3.1 The Questions
The code-writing question we studied and one possible so-

lution are presented in Figure 1. We refer to this question as

A list of students and their assignment marks has the
following format. Each element of the list is a tuple
where the first element is the student ID and the second
element is a list of marks. Here is an example:

marks = [(’dan11’, [76,80,67]), (’jane23’, [81,90,69]),
(’jones11’, [77,79,55])]

In the list of assignment marks, element 0 corresponds to
assignment 0. Every assignment is out of 100 marks.
Complete calc_average so that it works according to the
docstring.

def calc_average(a_num, marks):
’’’Return the average mark on assignment a_num for
all students in list marks.
Precondition: marks contains an assignment
corresponding to a_num.’’’

total = 0.0

for student in marks:

total += student[1][a_num]

return total / len(marks)

Figure 1: The code-writing (write) question with
solution entered into the answer box.

write. While this question does not require much code (not
much more than the concept questions introduced later),
students must understand several concepts and, as impor-
tantly, identify the need for specific programming structures
and integrate them. They must use a loop to iterate over
the tuples in the outer list, be able to use list-indexing, and
understand the idea of nesting inner lists within the tuples.
They must maintain an accumulator inside their loop (i.e.,
by using an expression) and, following the loop, divide that
accumulator by the length of the list (another expression).
Though the function header is given, elements of function
structure remain pertinent: students must include a return

statement and understand that the parameters are accessi-
ble as variables within the function.

This question was marked using an additive scheme worth
a total of five marks. Students earned one mark for each of
looping through the list, initializing and updating the ac-
cumulator, indexing a tuple’s second element (dealing with
the nested structure), and accessing the correct assignment
in the inner list. They earned 0.5 marks each for a return

statement and dividing the accumulator by the number of
marks. Syntax issues were generally ignored.

To target isolated elements of write, we created four con-
cept questions worth one mark each. They appear in se-
quence in Figure 2 with sample correct solutions provided
in the answer boxes. The bold font labels describing what
is required in each question (e.g., Accessing a List Ele-
ment) were included on the examination paper.

The first of these concept questions asks whether stu-
dents can index a list in isolation, and the second determines
whether students can perform a basic loop over a list. We an-
ticipated that this would be the combined minimum knowl-
edge required to make any progress whatsoever on write.
The third concept question adds one level of nesting to a
list, and the fourth introduces the idea of an accumulator.
Together, the latter two questions capture what we think of

Accessing a List Element. Write a single Python
statement to follow the code below that prints the value
’corn’ by accessing the third element from the list food.
food = [’peas’, ’carrots’, ’corn’, ’potatoes’]

print food[2]

Iterating Over a List. Assume you have the Python
variable friends that refers to a list of strings. Write
Python code to print each element of the list on a separate
line.

for friend in friends:

print friend

Nested Lists. Python list L is a list of lists that could
look as shown below. Using a for loop, extract and print
the second element of each of the sublists of L, each on
its own line. For example, if L were set as follows:

L = [[’a’, ’this_one’, ’b’], [’c’, ’that_one’, ’d’]]

your for loop would print:

this_one
that_one

for sublist in L:

print sublist[1]

Accumulating from a List. Assume you have the
Python variable prices that refers to a list of floating
point numbers. Write Python code to print the total of
all the elements in prices without using the built-in sum

function.

total = 0.0

for price in prices:

total += price

print total

Figure 2: The access, iterate, nest, and accumulate
concept questions. Solutions have been entered into
the answer boxes.

as the core of write. For the remainder of the paper, we
refer to these concept questions as access, iterate, nest,
and accumulate, respectively.

Most concept questions were marked as 0 (incorrect) or
1 (correct). On accumulate, 12 students received 0.5 for
either omitting the final print statement, not initializing the
accumulator, or including extraneous code such as an un-
necessary type cast.

4. RESULTS

4.1 Performance by Quartile
Table 1 presents student performance for each of the five

questions of interest. The average for the class and the av-
erage for each quartile is presented. The quartiles are based
on total exam mark.

The overall average on the final exam was 70%. The
questions we studied covered the most basic material on
the exam, so they each have substantially higher averages

accum-
write access iterate nest ulate

Mean 4.09 (82%) 0.95 0.95 0.79 0.90
Q1 2.69 (54%) 0.94 0.81 0.39 0.72
Q2 4.39 (88%) 0.875 1.0 0.8 0.93
Q3 4.34 (87%) 1.0 1.0 0.95 0.92
Q4 4.80 (96%) 1.0 1.0 1.0 1.0

Table 1: Average performance on each question for
the class as a whole (Mean) and for each quartile as
determined by the total exam mark.

than this. Unsurprisingly, the average for write was lower
than almost all of the concept questions. nest had a slightly
lower average, suggesting that the concept of nesting is par-
ticularly difficult.

The quartile data gives some indication of the types of
problems experienced by various achievement groups in the
class. For example, the students in the lowest quartile (Q1)
perform very poorly on write, but perform well on access
and iterate. It is likely that, for these students, a combina-
tion of the larger context of write and trouble with nesting
and accumulating leads to poor performance on the larger
code-writing task. However, the second quartile was able to
perform well on write despite relatively lower performance
on nest. This suggests that despite being at the core of the
question, nesting is not well represented in the final mark
for the question.

4.2 Performance of Subgroups
As explained earlier, we experienced difficulty in target-

ing concepts that seemed to have necessary prerequisites.
In accumulate, for example, we additionally tested their
ability to write a loop over the list. One can imagine an al-
ternative, where we provide students the skeleton of a loop
and ask them to write the one-line accumulator assignment
inside. Doing so would likely “give away” iterate.

We believe that our concept questions, therefore, are hi-
erarchical, in the sense that nest and accumulate require
the use of the concepts evaluated in access and iterate. We
expect this claim to be borne out in student performance on
write.

First, we expect that students who cannot answer iter-
ate will fail to make much progress on write. Only three
of the 77 students answered iterate incorrectly; on write,
they obtained scores of 2.5, 2.5, and 0. Based on the mark-
ing rubric, these students received some marks on write by
completing non-central aspects of the question like initializ-
ing a variable that could be used as an accumulator and by
including a return statement.

Turning to accumulate, 2 students scored 0, 12 students
scored 0.5, and 63 students scored 1. Students could ob-
tain a 0.5 for making a small syntax mistake. On nest,
16 students scored 0 and 61 scored 1. The performance of
these groups on the write question is broken down in Ta-
ble 2. Among those students who answered both nest and
accumulate correctly, the average mark on write was 4.44.
Nest and accumulate, therefore, appear to be a prerequi-
site for write but are not wholly sufficient. That is, write
includes “more” than the sum of its major concepts. The re-
lationship between nest and accumulate is less clear; one

accumulate Score 0 0.5 1
(# students) (2) (12) (63)
nest Score 0 1 0 1 0 1
(# students) (2) (0) (6) (6) (8) (55)
Mean write Score 1.25 N/A 2.33 4.33 3.53 4.44

Table 2: Performance on nest and accumulate is in-
dicative of performance on write. nest is the more
difficult of the two questions.

is not necessarily a prerequisite for the other, though nest
in general appears to be more difficult.

4.3 Predicting Performance
Writing code is the major determinant of whether a stu-

dent passes CS1, and the widespread use of integrative code-
writing questions [7, 11] suggests that CS1 instructors be-
lieve they are important assessments of student understand-
ing. We are therefore interested in measuring the extent
to which concept questions measure what is measured by
writing questions.

To address this, we performed a multiple regression with
iterate, nest, and accumulate as independent variables,
and write as the dependent variable. (access was dropped
from this and all future regressions since it did not contribute
to predictive power.) A power transform on write was re-
quired to create normally-distributed residuals. Assump-
tions of homoscedasticity (non-significant Breusch-Pagan test)
and imperfect multicolinearity (VIF = 1.29) were tenable.

The three concept questions explained approximately 37%
of the variance in the code-writing question (F = 14.2,
p = 0, R-squared = 0.37, adjusted R-squared = 0.34); each
of iterate and nest on its own was a significant predic-
tor (accumulate was weakly significant). A nonparamet-
ric Fisher’s exact test of independence, which is resistant
to small sample sizes, confirms that scores on the concept
questions (all correct vs. at least one mark lost) and write
(80% and greater vs. below 80%) are significantly depen-
dent (p = 0). This relationship is very similar to results
from Venables et al. [14] reported earlier. That is, when
targeting the key concepts of a code-writing question, it ap-
pears that our concept questions, like tracing and explaining
questions, significantly relate to code-writing questions.

Since the three concept questions were selected because
of their connection to the concepts evaluated by write, this
strong relationship is perhaps unsurprising. However, the
remainder of the final exam tested other concepts, many of
which we perceived to be more complex than the ones tested
by write. We therefore ran a multiple regression using the
same independent variables but with the final exam mark
(minus the contributions of the three concept questions) as
the dependent variable. Here, performance on the three con-
cept questions accounts for about 47% of variance on the
rest of the final exam mark (F = 21.51, p = 0, R-squared
= 0.47, adjusted R-squared = 0.45). In addition, we find
that write is only slightly more predictive on the remain-
der of the final exam mark than are the concept questions
(F = 75.27, p = 0, R-squared = 0.50, adjusted R-squared
= 0.49). Together, these results suggest that our concept
questions capture a component of ability that is also being
measured by the rest of the exam.

Many students answered all three concept questions cor-

rectly, and correspondingly did very well on write (on aver-
age, 4.47 out of 5). To investigate whether our relationships
hold with weaker students, we dropped all students who
scored a perfect three out of three on the concept questions,
and ran a multiple regression of the remaining concept ques-
tion scores against write. We find a significant linear rela-
tionship (F = 5.39, p = 0.007, R-squared = 0.46, adjusted
R-squared = 0.37). This is in contrast to other published
comparisons of question types where a linear relationship
to code-writing is nonexistent when the high-performers are
removed [14]. This may be due to our concept questions
requiring code-writing skills, even if they don’t require the
ability to compose multiple structures.

As a final analysis, we were interested in the extent to
which the three concept questions predicted performance on
the three other code-writing questions on the exam. The
first such code-writing question used the same setup as write,
but asked students to write a function to add one new mark
for each student. Unfortunately, scores on this question
were extremely negatively skewed, and normality of resid-
uals could not be attained. The second question asked stu-
dents to apply a list of weights to assignment marks in order
to return a new tuple mapping students to overall assign-
ment grade. The linear relationship was weak (accounting
for 20% of the variance); only nest was a significant predic-
tor. Finally, the third question required the use of dictio-
naries to keep a count of the number of each character exist-
ing in a supplied string. The linear relationship accounted
for 41% of the variance, this time with both iterate and
nest as significant predictors. It appears that our concept
questions can predict performance on code-writing questions
built to evaluate different, unrelated concepts. Some of the
necessary concepts, like iteration, are shared by these other
code-writing questions, but neither nesting nor the use of an
accumulator was required. The nature of this relationship
requires future work.

4.4 Discussion
Our concept questions were significant predictors of both

write and final exam performance as a whole. In addition,
write predicted final exam performance only slightly bet-
ter than our concept questions. Based on these results, we
suggest two hypotheses.

First, like explanation or tracing questions, concept ques-
tions correlate well with code-writing performance [14]. On
the surface, this is perhaps unsurprising, as our concept
questions do require some code to be written, as compared
to explain and trace questions. Yet, the amount of code
written for the concept questions is so small that one could
argue that it hardly reflects a “genuine” exam code-writing
question, or that such concept questions are so easy as to
fail as predictors of anything. Instead, we have found that
performance on concept questions tells us much about the
performance on more integrative code-writing questions.

Second, concept questions are testing only a subset of
what the code-writing questions are testing. Since the ma-
jor concepts required by write are embodied in the concept
questions, we suggest that any difference in performance be-
tween concept questions and write is due to a synthesis or
design component. In write, students are not only required
to understand concepts, but to know which of those con-
cepts to use in the first place, and how to synthesize them
in a coherent way. Poor performance on write is therefore

ascribable to fragile concept knowledge, a failure at the de-
sign stage, or a combination of the two. Concept questions
help us make progress toward disentangling these sources of
difficulty.

In this way, we suspect, but have not tested, that con-
cept questions will be more useful than integrative ques-
tions in terms of providing formative feedback to students.
There is some wizardry involved in arriving at a student’s
mark using a typical code-writing rubric [3]. Students can
sometimes earn a majority of marks on integrative questions
through correct “boilerplate” code (like setting up accumu-
lators and return statements) that is nevertheless distant
from the question’s intended target. Rubrics for concept
questions, on the other hand, can be as simple as awarding
a mark for a correct answer, or possibly half a mark if the
question is readily separable into two independent pieces.

Even if students are given the marking scheme for a typi-
cal question, we suspect that they will struggle to determine
exactly where marks were lost or what can be done to in-
crease their performance on the next assessment. Our con-
cept questions are labeled with the very concept that they
test. Getting a 0 on a concept question therefore carries with
it both the realization that they have answered incorrectly,
and a cue to the area on which the student should focus.

5. IMPACT OF EXPERIENCE
In a study on the relationship between self-efficacy and

mental models and learning to program, Ramlingam et al.[8]
demonstrate that self-efficacy is influenced by previous pro-
gramming experience and in turn affects course performance.
These authors claim that instructors of introductory pro-
gramming can increase student performance through activi-
ties that directly affect self-efficacy. They advocate that in-
structors “must challenge students but not overwhelm them
with complex programming tasks that undermine their self-
efficacy” and further suggest that “students need to incre-
mentally build up a history of success at increasingly difficult
tasks.”

We postulated that the large integrative code-writing tasks
may be overwhelming for beginning programmers and that
the use of independent concept questions would help stu-
dents to demonstrate success on the pieces of content that
they had mastered. To the extent that this is true, concept
questions may serve as affirmations of progress.

While all students in our study were learning to program,
students arrive in their first programming course with a
spectrum of previous experience. We wondered if the ability
to integrate the individual concepts was a skill that devel-
oped only after a certain amount of time or exposure to writ-
ing code. Perhaps the differences between the performance
on independent concept questions and integrative questions
would depend on the student’s level of programming expe-
rience. To study this, we included the question, “Before
this course, have you had any experience programming in
any computer language?” on the survey accompanying the
participant consent form.

The 46 experienced students in our consenting group did
very well on both write and on the concept questions. They
averaged 4.39 on write, and between 90% and 98% on each
concept question. A regression line for these students con-
firms that those who do well on concept questions do well
on code-writing (F = 6.79, p = 0.0008, R-squared = 0.33,
adjusted R-squared = 0.28).

A regression line explains a similar amount of variance for
the inexperienced subset. Yet, these inexperienced students
did correspondingly more poorly, averaging 3.64 on write,
0.90 on access, 0.97 on iterate, but only 0.61 on nest and
0.84 on accumulate. We hypothesize that this increased
variance in concept scores supports the utility of these ques-
tions as diagnostic tools. A Fisher’s test of independence is
inconclusive, though it weakly confirms that scores on the
concept questions (all correct vs. at least one mark lost) and
write (at least 80% vs. below 80%) are not significantly de-
pendent (p = 0.06). The corresponding Fisher’s test on the
experienced students was highly significant (p = 0). This
result suggests that, particularly for inexperienced students,
code-writing questions are more difficult than what might be
expected by conceptual performance alone. We hypothesize
that, while some inexperienced students obtain conceptual
knowledge, they have not had sufficient time during which to
be able to flexibly use that knowledge to solve new problems
in an exam situation.

We also hypothesize that our concept questions help us ad-
dress the call of Ramlingam et al.[8] to allow novices to build
confidence based on what they know. Our results indicated
that inexperienced students did well on some of the concept
questions, even in the face of poor performance on write.
We believe, in the case of term tests, that such successes
can be important for increasing self-efficacy. Even though
novices might not be able to write code on a first term test,
we do wish to acknowledge what they have learned.

6. CONCLUSION
Traditional code-writing exam questions seem to require

a mastery of several concepts, plus the ability to design
with or synthesize those concepts. Rubrics for such ques-
tions are difficult to create and use and, we suggest, equally
confusing as a formative feedback mechanism. Students re-
ceive marks for peripheral code in addition to code that
satisfies the question’s purpose; the mark received there-
fore may not alert students to core misunderstandings. We
propose that single-concept questions — questions targeting
one concept, or adding one concept over a previous concept
question — are more effective formative feedback tools. We
have shown that such questions correlate strongly with code-
writing questions and the final exam mark, suggesting that
what they target is a significant component of what we care
to test. That concept questions are less predictive for inex-
perienced students suggests a disconnect between conceptual
knowledge and code-writing ability for these students. Our
tentative suggestion is that some (but not all) of the code-
writing questions on tests can be replaced by concept ques-
tions, more clearly separating concept-understanding from
larger problem-solving and design considerations. We of
course believe that all of these abilities are important out-
comes of CS1, but we assert that questions targeted to each
skill are more indicative of specific abilities than questions
testing these skills in tandem.

7. REFERENCES
[1] J. B. Biggs and K. F. Collis. Evaluating the quality of

learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). Academic Press, 1982.

[2] M. Chi, P. Feltovich, and R. Glaser. Categorization
and representation of physics problems by experts and
novices. Cognitive Science, 5:121–152, 1981.

[3] P. Denny, A. Luxton-Reilly, and B. Simon. Evaluating
a new exam question: Parsons problems. In
Proceedings of the Fourth International Workshop on
Computing Education Research, pages 113–124, 2008.

[4] K. Goldman, P. Gross, C. Heeren, G. L. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Setting
the scope of concept inventories for introductory
computing subjects. Transactions on Computer
Education, 10(2):1–29, 2010.

[5] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and
C. Prasad. Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. SIGCSE
Bulletin, 38(3):118–122, 2006.

[6] M. Lopez, J. Whalley, P. Robbins, and R. Lister.
Relationships between reading, tracing and writing
skills in introductory programming. In Proceeding of
the Fourth International Workshop on Computing
Education Research, pages 101–112, 2008.

[7] A. Petersen, M. Craig, and D. Zingaro. Reviewing
CS1 exam question content. In Proceedings of the 42nd
ACM Technical Symposium on Computer Science
Education, pages 631–636, 2011.

[8] V. Ramalingam, D. LaBelle, and S. Wiedenbeck.
Self-efficacy and mental models in learning to
program. SIGCSE Bulletin, 36(3):171–175, 2004.

[9] C. Schulte and J. Bennedsen. What do teachers teach
in introductory programming? In Proceedings of the
Second International Workshop on Computing
Education Research, pages 17–28, 2006.

[10] J. Sheard, A. Carbone, R. Lister, B. Simon,
E. Thompson, and J. L. Whalley. Going solo to assess
novice programmers. In Proceedings of the 13th
Annual Conference on Innovation and Technology in
Computer Science Education, pages 209–213, 2008.

[11] J. Sheard, Simon, A. Carbone, D. Chinn, M.-J.
Laakso, T. Clear, M. de Raadt, D. D’Souza,
J. Harland, R. Lister, A. Philpott, and G. Warburton.
Exploring programming assessment instruments: A
classification scheme for examination questions. In
Proceeding of the Seventh International Workshop on
Computing Education Research, pages 33–38, 2011.

[12] J. Shertz and M. Weiser. A study of programming
problem representation in novice and expert
programmers. In Proceedings of the Eighteenth Annual
Computer Personnel Research Conference, pages
302–322, 1981.

[13] Simon and S. Snowdon. Explaining program code:
Giving students the answer helps – but only just. In
Proceeding of the Seventh International Workshop on
Computing Education Research, pages 93–100, 2011.

[14] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the
novice programmer. In Proceedings of the Fifth
International Workshop on Computing Education
Research Workshop, pages 117–128, 2009.

[15] J. L. Whalley, R. Lister, E. Thompson, T. Clear,
P. Robbins, P. K. A. Kumar, and C. Prasad. An
Australasian study of reading and comprehension
skills in novice programmers, using the Bloom and
SOLO taxonomies. In Proceedings of the 8th
Australian Conference on Computing Education, pages
243–252, 2006.

