
Modern Extensible Languages

Daniel Zingaro, McMaster University, Hamilton, Ontario, Canada

April 11, 2007

Abstract

Extensible languages are programming languages which allow a
user to modify or add syntax, and associate the new syntactic forms
with semantics. What are these languages good for? What kinds
of features are easy to add, and which are not? Are they powerful
enough to be taken seriously? In this survey we will attempt to answer
such questions as we consider procedural, object-oriented, functional,
and general-purpose extensible languages. We are primarily interested
in expressive power (regular, context-free), associated caveats (unhy-
gienic, ambiguity) and ease of use of the various mechanisms.

1 What is an Extensible Language?

Before beginning, it is essential to have an operational definition of what,
exactly, constitutes an extensible language; this will dictate the flow of the
remainder of the paper. Standish [23] gives a rather broad definition, stating
simply: an extensible language allows users to define new language features.
These features may include new notation or operations, new or modified
control structures, or even elements from different programming paradigms.
To facilitate discussion, it is helpful to adopt Standish’s nomenclature, and
divide this spectrum of features into three classes: paraphrase, orthophrase
and metaphrase. Paraphrase refers to adding new features by relying on
features already present in the language; a prototypical example is defining
macros, which of course ultimately expand into the programming language’s
standard syntax. Orthophase refers to adding features not expressible in
terms of available language primitives; for example, adding an I/O system
to a language that lacks one. Finally, metaphrase refers to changing the
interpretation of existing language elements, so that expressions are parsed
in new ways. In 1975, Standish painted a rather bleak picture of the success

1

of metaphrase techniques; we will see shortly that thirty years of experience
have certainly improved the situation.

There are several classes of programming languages (imperative, func-
tional, object-oriented) for which we may attempt language extension. The
remainder of the paper is thus organized as follows. We begin with a sim-
ple macro definition facility for an imperative language (C), then move into
more sophisticated mechanisms available in a (mostly) functional language
(OCaml). We then look at two rather different extension ideas for an object-
oriented language (Java), investigate the body of work related to hygienic
macro expansion (Scheme), and conclude with two powerful general-purpose
extension languages. Throughout, we will draw comparisons between the
parsing mechanisms used and the expressiveness of the techniques.

2 Unhygienic Macros in C

We shall begin where we inevitably must begin any survey of program-
ming languages: with C. The C preprocessor includes a mechanism whereby
macros can be defined; prior to compilation, these definitions are expanded so
that the compiler can focus on C proper. (We are therefore looking at a para-
phrastic mechanism.) Provisions are made for two types of macros: object-
like, and function-like [16]. Object macros simply associate an identifier with
a corresponding replacement (typically valid C code). The most common use
for this basic text substitution is introducing mathematical constants such
as π, or program-specific constants such as ARRAY SIZE. Function macros
are similar to standard C functions in many ways. They can accept ar-
guments, which can be used in their corresponding replacements, and can
additionally be variadic (i.e. can accept a variable number of arguments).
A common example of such a macro is the following, which computes the
minimum of two numeric values (taken from [16]):
#define min(X, Y) ((X) < (Y) ? (X) : (Y)) After this point in the source
file, min is available as (what looks like) predefined C syntax, and can be
invoked like any other C function.

In passing, we should note the other main use of the C preprocessor:
allowing inclusion of other C source files. This can be thought of as a feature
in the orthophrase category because, for example, it can allow adding features
(like strings and input/output) which do not belong to the base C language.

2

2.1 Discussion

What we have just described is certainly not a very convincing argument
for the claim that C is an extensible language. Most of the functionality
allowed by the object-like macros could be directly incorporated in a typesafe
way in a language supporting constant definitions. Function macros are
expanded inline — an optimization that admits a certain speedup at the
cost of increased code size. However, this is typically available as a compile-
time option anyway, so these macros seem to offer little more than standard
C functions. Even the syntax used when calling these “functions” still looks
like C. Is this really extensibility?

The utility of the preprocessor is further marred by its so-called un-
hygienic nature. This means that innocuous-looking macros can unwit-
tingly hide variables which should be acted upon, or – via subtle paren-
thesization issues – change precedence rules as to get an undesired effect.
Most of these problems stem from the fact that, in contrast to standard
functions, direct substitution of actual arguments for formal arguments is
made. As a concrete example, a macro to swap two arguments may look
like #define swap(a, b) {int t; t = a; a = b; b = t;} If a variable
t happens to occur in a lexical scope where this macro is expanded, it will
be hidden by the new scope of the macro, and so a swap involving t will
do nothing. Additionally, if a function invocation is used as an argument to
this macro, the function will be executed twice, because it is expanded twice
within the macro body [16]. Should the function have any side effects, the
results will again be unexpected.

Do seasoned C programmers really make these types of mistakes? Surely
not, especially in light of well-known techniques for minimizing the afore-
mentioned issues, such as parenthesizing the entire macro body and all of
the individual variables therein [16]. Ernst et al. [13], however, analysed 26
C programs comprising 1.4 million lines of C code and found quite the oppo-
site. Of all macro definitions, 23% of them included latent errors (of the sort
we have described), waiting to strike when called with just the right identifier
names, in just the right lexical environment. In summary, then, not only is
this macro facility not much of an extension to C, it is a dangerous one at
best. We will now consider far safer, more powerful alternatives.

3 Camlp4

Camlp4 is a preprocessor for the multi-paradigm language Ocaml; that is, it
performs transformations on code, much like the C preprocessor described

3

above. Vastly different, however, is the method by which Camlp4 achieves
its results. First, instead of acting at a textual (search and replace) level, it
performs transformations on Ocaml abstract syntax trees (ASTs) [9]. Sec-
ond, it allows for the grammar of the Ocaml language to be augmented with
new rules, modified rules, or the deletion of rules. To effect a syntax transfor-
mation, one first modifies the Ocaml grammar to include the desired syntax.
Next, to transform this new syntax into Core Ocaml, transformations are
specified in order to create a new AST from the old one. Creating ASTs
node-by-node would be tedious [9], and so Camlp4 provides a mechanism
called quotations to ease the task. Specifically, quotations allow one to de-
scribe an AST by using Ocaml concrete syntax — since it is unambiguous, it
can be directly translated to the corresponding AST. While standard Ocaml
concrete syntax would suffice, the designers of Camlp4 took this opportu-
nity to introduce a modified syntax for use inside quotations. The thinking
was that they would clean up the rough parts of the grammar, making it
easier to understand, parse and pretty-print [9]. (As with any language
that tries to remain backward-compatible for many years, Ocaml’s syntax
is bogged down with legacy constructs, unnecessary to preserve for use in
quotations.) As a case in point, standard Ocaml syntax allows the program-
mer to declare what is effectively a global variable: let magicnum = 42.
It also allows let-bindings to be introduced with the same let keyword:
let magicnum = 42 in magicnum 5+. These two constructions result in
different types of AST nodes; the one to create is not known until the word in

is (or is not) seen. Using value for the first case, and continuing to use let

for the second, dispenses with this parsing difficulty. Other changes include
using C-like curly braces in imperative constructions, eliminating duplicate
constructs for referring to boolean operations and assignments, and requiring
parentheses around tuples [9].

With these pieces in place, we can now present a concrete example, taken
from [9], of extending Ocaml’s syntax with a C-style for-loop. As specified
above, we first extend the Ocaml base grammar; the following achieves this:

extend expr: LEVEL "expr1"

[["for"; v = LIDENT; iv = expr LEVEL "simple";

wh = expr LEVEL "simple"; nx = expr LEVEL "simple";

"do"; e = expr; "done" ->

gen_for loc v iv wh nx e]]

Notice that the new for-loop extends the expr nonterminal; that is, it is
an expression, just like while, if, and the original (restricted) for. The
LEVEL annotations are used by Camlp4 to disambiguate concrete syntax,
and is used for imposing precedence and associativity [9]. The keywords

4

in quotation marks, such as for include their text exactly in the concrete
syntax; the other parts of the definition associate symbolic names with pieces
of the syntax tree, such as expressions or identifiers. The following, then, is
a valid for-loop according to this new syntax:
for c 0 (c<5) (c+1) do print_int c; done

The final step is to translate from the new syntax back into core Ocaml
to be compiled; it should be clear that gen_for should carry out this task.
In [9], it is defined as:

let gen_for loc v iv wh nx e =

let loop_fun = gensym "iter" in

<:expr<

let rec $lid:loop_fun$ $lid:v$ =

if wh then do { e; $lid:loop_fun$ nx } else ()

in $lid:loop_fun$ iv >>

Gensym, not shown (but see Appendix A for a sample), returns what it hopes
is a unique identifier, by using a counter plus an obfuscated text string; its
result is captured in loop_fun. The syntax <:...>> defines a quotation (an
AST node) - in this specific case, an expression node. The quotation defines
a recursive function which takes one parameter (the starting value of the
for-loop variable), and proceeds to test the first expression (iv) of the for-
loop. If it is true, it executes the loop expression e and recurses with the new
value of iv resulting from the third expression. The dollar-signs allow ASTs
(such as expressions) to be inserted in bigger ASTs (i.e. the ones created by
quotations).

Many new constructs can be added via Ocamlp4; camlp4tut additionally
contains a Pascal repeat-until loop and C-like #defines; [17] implements a
try...finally construct; and the present author has added a simple form
of type ascription in the spirit of the one presented in Chapter 11 of [21] (see
Appendix A).

3.1 Discussion

Camlp4 gives a glimpse into the power of metaphrastic techniques, since it
allows old rules of the grammar to be substituted for new ones. The Ocaml
grammar is specified in such a way as to make it parseable by a recursive
descent parser [8]. The changes one makes to the grammar should therefore
not violate this property. To make this more feasible, Camlp4 automati-
cally left-factorizes rules of the same precedence level [8], but we are still
left with only a subset of context-free grammars at our disposal. Further-
more, like C macros, the Camlp4 substitutions are unhygienic in general, as

5

is evident from the techniques used to generate (hopefully) conflict-free iden-
tifiers. However, because we are now operating on ASTs, precedence issues
and correct parenthesization become non-issues. The types of modifications
we can make are certainly more powerful as well: they “look” different than
core Ocaml syntax. The grammar extension idea, then, seems like a powerful
technique to effect extensibility, and so we will pursue the study of related
attempts below.

4 Java Syntactic Extender

The Java Syntactic Extender (JSE) is to Java what Camlp4 was to Ocaml.
It is again a syntactic preprocessor, which interoperates with the code of
the target language [1]. As evidenced by the previous section, there are
several advantages to this approach, as opposed to a specialized substitution
language. Most notably, no such language has to be created in the first place,
and the full power and expressivity of the target language (Ocaml or Java)
is available. For manipulating fragments of source code, JSE uses skeleton
syntax trees (SSTs). Similar to Camlp4’s ASTs, SSTs work on the abstract
syntax of the language; the difference is that SSTs contain only the shapes
most useful for macro processing [1]. Such SSTs can be created manually,
or can be created using concrete syntax via code quotes - similar, even in
name, to Camlp4’s quotations. A pattern matching technique is used to add
new syntactic forms to the Java grammar. SST structures (represented as
code quotes) are specified as the patterns to match, and identifiers are bound
to specific parts of the tree for use in the associated translation. Rules for
a specific construct are examined, top to bottom, until a match is found;
if there are multiple possible matches, only the first is used. Additionally,
there are no provisions for any ambiguity introduced into the grammar by
such modifications. When source code written in an extended syntax is to
be converted to standard Java code, the macro expander works top-down,
expanding macros according to the above rules, until none remain. For every
identifier that could be macro-expanded, JSE looks for a class file with a
predefined name, prefixed by the identifier it is trying to expand. In this
way, syntax expanders take on an object-oriented flavor to compliment the
rest of the language; note, though, that this requires that all macros begin
with a name (i.e. an identifier).

It should not be surprising that the types of transformations possible
with this syntax extender (foreach loops, syntax for enumerations, synonyms
for existing keywords, etc.) are similar in power to those possible with
Camlp4 [1] [2]. Hygienic macro expansion is, once again, not implemented,

6

and measures must be taken to prevent the now well-known problems this
entails. For example, if we try to write a macro to add a foreach statement
to Java (presumably for versions prior to 1.5) in terms of for and iterators,
we must pick a name for the iterator. If nested foreach statements are en-
countered, though, the inner iterator name will bind the outer one [2]. We
are forced, yet again, to settle for an identifier generator, with a statement
such as Fragment i = IdentifierFragment.genSym("i") to generate
fresh identifiers.

5 OpenJava

We’ve already illustrated why the textual replacement macro techniques are
unsuitable as general language extensibility features, and found that AST-
based approaches seem to rectify many of their shortcomings. Can we do
better than this, using some other structure for code representation?

To begin, observe once again that syntax trees are just a parsed repre-
sentation of textual source code. Node types are introduced to represent the
abstractions of the language, and further phases of the compiler operate on
this intermediate representation rather than raw source code. However, in
terms of information about context or program structure, the syntax tree
says no more than the original code [24]. What this means is that, while
working at the AST level can help us with precedence issues and make it
easier to perform substitutions, it cannot assist when other information —
such as types — is necessary for proper macro functioning. As a specific
example, consider the observer design pattern, where objects designated as
observers of subject X are notified by X of changes they should be aware
of [24, 14]. Such observers may have to adhere to an interface specifying
various notifications that they may be sent; should they wish to ignore an
event, the corresponding method body is intentionally left blank [24]. This
opens the possibility for introducing a macro to fill in these empty meth-
ods, assuming that they were not included because observers plans to ignore
them.

With our existing ideas, it should be obvious that this task is not eas-
ily accomplished. To begin trying, we should look for syntax in our class
that is to be replaced by new syntax which defines the missing methods.
This immediately leads to problems. Which missing methods are we talking
about? Naturally, they would be defined in an interface, not even present in
the source file we are manipulating. Assuming we somehow knew what these
methods were, what do we match our class text against to determine which
methods are missing? Perhaps we could pattern match against the entire

7

syntax tree, extract the method names, determine which methods from the
interface do not exist, then augment the AST with these new methods. This
involves much knowledge about the syntax trees of Java and, to be sure,
things would be easier if a more useful representation of the source program
was available. If we instead had a list of methods that the class was required
to implement, and a means to insert new methods into this collection, writing
the macro would be reduced to a trivial exercise. The idea is that we would
get a list of methods present in the class and determine which of these meth-
ods included the abstract modifier. This would give a list of methods that
were left out of the class source, so we can simply add these methods and give
them empty bodies: no explicit AST, no complicated pattern matching [24].
This line of thinking encapsulates the main ideas of OpenJava—a powerful
metaphrastic system for Java.

The central idea is the class meta-object — an object representing the
logical structure of a Java class [24]. These objects provide streamlined ac-
cess to the class they represent through method calls, which are used by
macros to modify the class [24]. The classes for such meta-objects are called
metaclasses, and all inherit from a common metaclass (OJClass) which re-
quires the existance of a translateDefinition method to perform the actual
macro expansion. Including an instantiates clause in a class definition tells
OpenJava to associate an object of the specified metaclass with that Java
class.

TranslateDefinition can make use of member methods of OJClass [24].
For example, getMethods can be used to get a list of the Java class’s meth-
ods; getModifiers can be used on these methods to obtain their modi-
fiers (like public or private); getReturnType can be used to obtain the re-
turn type of methods; OJMethod is used to create new method metaobjects;
and addMethod can add new methods to Java classes. We can now present
translateDefinition for the previously described observer pattern, taken
from [24]:

void translateDefinition() {

OJMethod[] m = this.getMethods(this);

for(int i = 0; i < m.length; ++i) {

OJModifier modif = m[i].getModifiers();

if (modif.isAbstract()) {

OJMethod n = new OJMethod(this,

m[i].getModifiers().removeAbstract(),

m[i].getReturnType(), m[i].getName(),

m[i].getParameterTypes(), m[i].getExceptionTypes(),

makeStatementList("return;"));

8

this.addMethod(n);

}

}

}

Note that OJMethod’s constructor takes a list of arguments corresponding to
the current method’s modifiers, return type, name, parameters, throwable
exceptions, and body, all trivially derived from the abstract method m, which
exists in the interface implemented by a Java class acting as an observer.
Note also that we do not even have to mention superclasses or interfaces,
let alone look at their code or structure. This representation of Java syntax
admits other advantages as well. For example, as the authors note [24], if we
want to change the name of a class via a macro, we certainly want to change
the name of the class’s constructors as well, to correspond with their new
class. Since this is a required change, understood by the macro processor,
OpenJava can do this automatically. (We can imagine having to find all these
nodes and change them in AST-based approaches.) As a second example,
we do not have to be concerned with the order of methods in a class, or
the order of class or method modifiers: the lack of explicit AST makes this
inconsequential, and abstracting away this detail makes preprocessing far
simpler than dealing with all possible combinations.

While the above discussion was phrased in terms of caller-side transla-
tions (i.e. translations within a class), OpenJava also supports callee-side
translations. For instance, we can modify all places in the code where a spe-
cific class is instantiated, which helps write macros for other design patterns
including flyweight.

Since preprocessing begins under the premise that we have a valid Java
class structure, we might think that extending the syntax in arbitrary or un-
usual ways would pose significant challenges. For example, how is OpenJava
supposed to give us a list of methods if we introduce alternative syntax for
method declarations? If we really obscure the syntax of Java classes, and
since we do not yet have a means of extending the Java grammar, certainly
OpenJava can’t return meaningful structures for us to operate on. Even so,
OpenJava does allow modest forms of syntax extension, which nicely fit into
the model we have described. For example, modifiers on methods and classes
are just keywords appearing prior to the class or method name. OpenJava
therefore allows arbitrary modifiers to be added to the language [24]. There
are also specific points in a class file where new clauses can be added; for
example, prior to the definition of the first member declaration, or prior to
the body block of such declarations. When the parser finds a word it does
not understand, it invokes a user-defined method which returns an object

9

representing a grammar production to parse. Parsing is achieved through an
LL(k) technique, so has comparable power to the recursive descent parser
used by Camlp4.

6 Hygienic Macros in Scheme

Much research has been undertaken in the implementation of macro systems
for the Lisp family of languages, including Scheme. For this reason, it should
not be surprising that most work on hygienic macro expansion (one of our
goals outlined at the outset) presents itself in such languages; we therefore
devote this section to the topic.

How can we be unhygienic in a language like Scheme? There are es-
sentially two ways. The first involves expanding the macro with unlucky
identifier names, as in the C swap example given earlier; in other words, the
new bindings capture references to identifiers of the same name [12]. The
second involves referring to identifiers within macro bodies in lexical scopes
where the identifier names have been unpredictably bound [12]. In C, we
can witness this by having a macro call what we think is a procedure, but,
because of a local definition, is actually a variable [5]. In Scheme, contriving
an example is no more difficult: we can write a macro that thinks it is using
the if operator, and call it from within a scope where if has been defined
as an integer variable [12]. Like C programmers, schemers have come up
with ways of coping with these problems (including using generated iden-
tifier names) which we know are innefective because they rely on explicit
programmer intervention.

An algorithmic solution to the problem was first proposed by Kohlbecker [18],
and has subsequently been used (adapted or otherwise) in other Scheme
macro incarnations [12, 5]. The core idea of the algorithm is to take advan-
tage of alpha-equivalence, renaming bound variables to avoid unwanted vari-
able capture. (The same technique is used when performing beta-reductions
in the lambda calculus, since this does not affect the terms that are being
rewritten [21].) Kohlbecker notes that one might initially try to just re-
name variables right after a macro expansion introduces them. However,
some such variables should not be renamed; for instance, those which are
free in the macro (and should be captured by bindings in the enclosing lex-
ical scope) [18]. This problem is exagerated via pyramiding, where macro
expansions are based on previously defined macros: in this case it is not
even clear which variables are to remain free. Defining a transcription as one
step in the macro expansion process, the goal of the algorithm is to prevent
bindings introduced in one such transcription from capturing bindings from

10

other transcription steps or user-defined identifiers [18]. This is achieved
through a four-step process. First, all variables are replaced by so-called
marked identifiers, which associate variables with timestamps (initially all
the same). Next, macro expansion is performed, but after every transcrip-
tion, the generated variables are replaced with marked identifiers carrying the
same timestamp [18, 15]. In phase 3, we replace the bound, time-stamped
identifiers with unstamped identifiers which preserve the property that they
do not capture variables generated by other transcriptions. The final phase
simply removes the timestamps on the remaining (free) variables, and we are
left with a normal unstamped term again.

As a concrete example to show some of the algorithm’s workings, consider
the following term, adapted from [15]:

(let ((t yes)) (or #f t))

This uses a let-binding to associate the string “yes” with the identifier t,
which stays in scope throughout the body of the let. It then passes the
terms #f and t to or. Or is a procedure which continues to evaluate its
arguments until it finds one which is true, and this becomes its return value.
If all provided arguments are false, or if there are no arguments, or returns
false. (In Scheme, everything besides #f is true.) The term should therefore
evaluate to “yes”. Let’s assume that or is a derived form 1 which expands as
follows (simplifying to the case where only two arguments can be supplied):
verb+(or e1 e2) -¿ ((lambda (t) (if t t e2)) e1)+. Abstracting on the first
expression here is necessary to avoid computing its value twice, which is the
wrong behavior if it has side-effects.

Using this definition of or, our term rewrites as follows:

(let ((t "yes"))

((lambda (t) (if t t t)) #f))

This reduces to #f - the wrong result, and all because the lambda-bound
variable in the expansion of or was t! Using Kohlbecker’s algorithm, au
contraire, gives the following:

(let ((t:1 "yes"))

((lambda (t:3) (if t:3 t:3 t:1)) #f))

1It would also be possible to rather easily define or directly in Scheme as a function,
and one might wonder why a macro is necessary. The reason lies in the call-by-value
semantics of Scheme, where all arguments to functions are evaluated prior to being used;
this does not correspond with the or semantics.

11

Substituting “yes” for t:1, and #f for t:3, the term reduces (correctly) to
“yes”. This shows that the variable t was overloaded to refer to two distinct
entities with the naive expansion, and rectified using Kohlbecker’s algorithm.
The complete algorithm is given in [18].

While the algorithm has proven very effective, there are some drawbacks
that have been addressed in later work. For example, recall the structure of
the algorithm, which we can summarize as a naive macro expansion followed
by re-visiting the expanded code to mark the new identifiers. This is an
O(n2) algorithm, compared to O(n) for a naive expander [5]. In [5], this
problem is rectified by marking the identifiers when they are first introduced
by the expander, avoiding the costly re-scan. In order to ascertain which
identifiers are newly introduced, though, macros must be restricted to a high-
level, and hence more restrictive, language. In [12], Kohlbecker’s algorithm
is once again adapted, this time avoiding the quadratic time complexity and
also allowing macros to be written more expressively. Provisions are also in
place to escape the usually-desired hygienic features, which can sometimes
be useful.

With these algorithms as the backdrop, we can now focus on how to
achieve macro extension in Scheme. We use define-syntax, which asso-
ciates a transformer with a keyword [11]. This is similar in spirit to what
was done in the Java Syntactic Extender, and again, there are syntactic forms
available for easing the creation of these transformers, including syntax-rules
and the more powerful syntax-case. To use syntax-rules, we provide a list of
literals, and a list of clauses. Clauses are pattern-template pairs: whenever
the pattern is found, it is transformed according to the corresponding tem-
plate [11]. Identifiers in patterns are pattern variables, unless they appear
in the list of literals, in which case they are treated as auxiliary keywords.
An example of such a keyword is else, required by a macro implementing
an if-then-else construct. We can also use ellipses in patterns, to match zero
or more repetitions of the adjacent subpattern. In syntax-case, transformers
are procedures of one argument, taking and returning syntax objects. We
again specify a list of clauses consisting of patterns and expressions, the lat-
ter describing how to rewrite syntactic forms that matched the associated
pattern. Syntax-case also allows the presence of fenders, which can impose
additional constraints on the pattern-match, independent of syntactic struc-
ture. For example, fenders can be used to determine if the introduction of a
new binding would capture references to other identifiers [10]. (Since macros
in syntax-case are hygienic, this can only happen if the two identifiers have
the same name, and were both introduced at the same transcription step.)

A simple, concrete example of syntax-case may help put this dialogue into
perspective. We present a macro expansion for when, which takes expression

12

e0 and one or more expressions e1, e2, · · · , em, and executes e1, e2, · · · , em
if e0 is true [10]. Notice how ellipses are used to specify “zero or more”
expressions.

(define-syntax when

(lambda (x)

(syntax-case x ()

((_ e0 e1 e2 ...) (syntax (if e0 (begin e1 e2 ...)))))))

7 General Extensibility Frameworks

TXL, the Turing Extender Language, was initially invented to quickly allow
modifications to be made to the Turing language’s syntax. The reason was
that Turing was developed by assessing how user’s expected it to work, and
then modifying it to fit this perception [6]. TXL was thus conceived as
a rapid prototyping environment with which to test new additions to the
language without having to modify any component of the compiler [6]. It
has since grown into a powerful language-independent extension facility, and
in this way deviates substantially from language-dependent extenders of the
flavor we saw above. We start with a base language grammar, then define
new rules or redefine old ones, and assign semantics to the new syntactic
forms. The original grammar, and new definitions, are presented in EBNF;
that is, we can specify that something be optional or can be repeated zero
or more times, in addition to using BNF-style sequencing and alternation.
Grammar rules are represented as lists, and parsing decisions are made based
on the first rule that matches [6]. In this way, ambiguity is implicitly resolved
via the order of productions given in the grammar text. When adding an
alternative to a rule, we can decide whether it should be the first or the last
rule examined, providing an easy way to give it high or low priority. A top-
down (theoretically exponential) backtracking algorithm is used to facilitate
parsing of any context-free grammar. Unfortunately, this exponential worst-
case can easily occur with left-recursive grammars. TXL detects this special
situation and uses a bottom-up parser at these points.

Besides matching on a single level of syntactic category, TXL provides
deconstructors which allow pattern variables to be matched against more
specific patterns. For example [6], assume we have bound a variable x to an
if-statement, and we want to remove it if the if-condition is literally false. We
can deconstruct the if-statement in x into its components, one of which is the
if-condition. We can further deconstruct this into its lexical representation;
if it is “false”, it shouldn’t appear in the translation of the code, so it is
replaced by the statements following it.

13

TXL also includes provisions for making transformations dependent on
context information from other parts of the code, and hence on other vari-
ables bound to remote parse trees. We use subrules for this, passing them
the variables on which they may depend. To exemplify this — and also the
general flavor of a TXL definition — we present an example that replaces
constants by their values in source text [6]. Note how C binds the identifier
name after the string “const”, while V binds its associated expression. Re-
placeByValue is the subrule which finds occurrences of C, replacing them by
(parenthesized) V.

rule resolveConstants

replace [repeat statement]

const C [id] = V [expression];

RestOfScope [repeat statement]

by

RestOfScope [replaceByValue C V]

end rule

rule replaceByValue ConstName [id] Value [expression]

replace [primary]

ConstName

by

(Value)

end rule

The types of transformations possible with these facilities are far-reaching;
for example, [7] defines a generics instantiator, which allows the definition of
generic structures (procedures, modules, variables) in Turing.

Since its inception, TXL has adopted the attitude which drove Turing’s
development: modify the language to suit user expectations. One feature
added as a result of this was guards, implemented via “where” clauses [6]. In
the spirit of destructors above, we often want to impose further constraints
on a rule, even after it successfully matches on some part of the input. This
is accomplished using condition rules, which are like normal TXL rules, ex-
cept they do not perform any substitution. They may succeed or fail; failure
results in the failure of the calling rule. Other features had to be added
to TXL as it branched off from its Turing-centric beginnings. For exam-
ple, Turing’s lexical conventions were once built-in to TXL, but now it is
user-configurable [6]. This additionally lets users work at the lexical level
(supporting, for example, scannerless parsing), should it prove more conve-
nient.

14

A similarly general extension mechanism has been developed by Cardelli
et al. with their work on extensible grammars [3]. Compared with TXL,
these extensible grammars are parsed as LL(1), and so we have to be more
careful when crafting and extending grammars. Instead of beginning with a
context-free grammar of the base language, we instead start with its abstract
syntax. This is described by giving the sorts (the types of tree nodes) and
constructors (the valid ways of making these nodes). For example, the nodes
in a lambda-calculus syntax will naturally include term, and the constructors
would include application (taking two terms and returning one). There are
three predefined sorts for identifiers, for specifying that an identifier is being
used as a binder, that it is within a binding expression or that it is not scoped.
We can then provide a context-free grammar and associated translation rules
for translating a concrete syntax into this abstract syntax. In order to avoid
unwanted variable capture, the binding information present in the abstract
syntax is used to rename variables. As in TXL, further abstractions can
then be added by extending the context-free grammar in various ways, such
as adding new nonterminals, adding new productions to existing nontermi-
nals or completely redefining the productions of nonterminals. Productions
are associated with actions, which can use variables bound in the matching
process as arguments to constructors. This corresponds to creating ASTs
node-by-node and, as we’ve come to expect, there is also a pattern mech-
anism which allows the constructors to be implicitly called via previously
defined concrete syntax.

8 Other Extensible Languages

There are several other extensible languages which we only briefly mention,
not because they are unimportant, but because our cross-cutting survey has
already covered their main ideas.

8.1 OpenC++

OpenJava was actually developed after its author had worked on a similar
system for C++ called OpenC++. It similarly uses a meta-object proto-
col, which refers to having the metaobjects control compilation [4]. Instead
of the more object-oriented view of the class structure used in OpenJava,
OpenC++ uses what is conceptually still a parse tree [24], tending to make
some elementary examples more complicated.

15

8.2 Seed7

Seed7 is syntactically similar to Pascal and Ada, but also includes object-
oriented features and extension mechanisms [20]. An extension includes two
parts: a syntax definition, giving a template for the new syntactic form (in-
cluding, as in Camlp4, associativity and precedence information), and what
looks like a standard Seed7 function, used to superimpose a semantics. The
function takes the parameters of the new syntax (variables, types, state-
ments) and can use them in the body of the function to effect the transfor-
mation. Like Camlp4, the Seed7 grammar with macro extensions is parsed
via recursive descent [19]. Seed7 does more work to detect ambiguities at
compile-time, though, and alerts the user appropriately. As an example,
defining an infix operator in of higher priority than a for-loop which uses
in as one of its keywords causes the for-loop to never be recognized. This
is detected at compile-time and a priority error is given.

8.3 Felix

Felix is a procedural language with static typing, first-class functions and
garbage collection [22]. The extensibility features come in several flavors:
a C-like preprocessor, the ability to add new infix operators by associating
them with prefix-style functions, and a mechanism for extending the grammar
with new rules or new nonterminals.

9 Conclusion

Why are extensible languages useful? This question should now be easy to
answer, in light of what we have already presented. Far more interesting is
to consider why the pioneers of the idea thought extensible languages were
useful. Consider Cheatham’s [25] explanation which relies on problem do-
mains. A programming language may be employed by different programmers
to solve scientific, data manipulation, and system’s programming tasks [25].
These different areas have their own idioms, units of data and programming
styles. In scientific software, we deal with vectors and matrices, with op-
erators often written in infix; in system’s programming, we often work at
the bit level, and require low-level operators interfacing more directly with
the hardware. We can, from one perspective anyway, consider an extensible
language as allowing us to express our required operations and notations as
language primitives. Of course, there are alternatives: we may instead decide
to create new languages to facilitate working in the various areas. Cheatham

16

and others (cited in [23]) scoff at this idea, though, and allude to an extensi-
ble, super-language which would alleviate the use of all other languages. We
now know that this lofty goal was fated from the start, as various program-
ming paradigms now flourish as distinct programming languages. Perhaps,
then, we should think of extensibility as a way to add expressiveness to a
base language, not as a way for mutating a language into something it is not.
Nothing we have presented above makes it clear how we could easily adapt
an existing language to deal with entirely new problem domains. Instead,
we can start with a language that “mostly” suits our goals, and then (via
the powerful extensibility mechanisms we’ve seen) fill in the gaps to add the
missing pieces.

A Type Ascription in Camlp4

Type inferencing algorithms, such as the one employed by Ocaml, conve-
niently allow programmers to leave out the types of terms and automatically
reconstruct necessary type information. Sometimes, though, it would be
convenient to explicitly include this information in source text [21]. For ex-
ample, it can serve as in-code documentation, clarifying the intended type of
a specified term. When subtyping is present, it can also instruct the compiler
to treat a term as a given (super) type of the most general type that was
inferred. Since Ocaml allows type annotations to be associated with lambda-
bound terms, the macro expansion technique for type ascriptions in general
is very simple. The idea is to take syntax of the form t as T, and rewrite
it as (%x:T . x) t. If the type ascription is incorrect, a compile-time error
will result; if it is correct, then one beta-reduction removes it and evaluation
continues. The Camlp4 code realizing this idea follows.

open Pcaml;;

let unique =

let n = ref 0 in

fun () -> incr n; "__pa_ascribe" ^ string_of_int !n

EXTEND

expr: LEVEL "expr1"

[[e1 = expr; "as"; e2 = ctyp ->

let newName = unique () in

<:expr< (fun ($lid:newName$:$e2$) ->

$lid:newName$) $e1$ >>]]

END

17

References

[1] Jonthan Bachrach and Keith Playford. The Java syntactic extender
(JSE). In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN con-
ference on Object oriented programming, systems, languages, and appli-
cations, pages 31–42, New York, NY, USA, 2001. ACM Press.

[2] Jonthan Bachrach and Keith Playford. Java syntactic extender. http:

//jse.sourceforge.net, 2003.

[3] Luca Cardelli, Florian Matthes, and Martin Abadi. Extensible syntax
with lexical scoping. Technical Report 121, Digital Systems Research
Center, 1994.

[4] Shigeru Chiba. A metaobject protocol for C++. In OOPSLA ’95: Pro-
ceedings of the tenth annual conference on Object-oriented programming
systems, languages, and applications, pages 285–299, New York, NY,
USA, 1995. ACM Press.

[5] William Clinger and Jonathan Rees. Macros that work. In POPL ’91:
Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 155–162, New York, NY, USA,
1991. ACM Press.

[6] J. R. Cordy. TXL – a language for programming language tools and
applications. In ACM 4th International Workshop on LTDA, volume
110 of Electronic Notes in Theoretical Computer Science, pages 3–31.
SpringerVerlag, Dec. 2004.

[7] James R. Cordy, Charles D. Halpern-Hamu, and Eric Promislow. TXL:
a rapid prototyping system for programming language dialects. Comput.
Lang., 16(1):97–107, 1991.

[8] Daniel de Rauglaudre. Camlp4 manual. http://caml.inria.fr/pub/

docs/manual-camlp4/index.html, 2003.

[9] Daniel de Rauglaudre. Camlp4 tutorial. http://caml.inria.fr/pub/

docs/tutorial-camlp4/index.html, 2003.

[10] R. Kent Dybvig. Writing hygienic macros in Scheme with syntax-case.
Technical Report TR 356, Indiana University, 1992.

[11] R. Kent Dybvig. The Scheme Programming Language, Third Edition.
The MIT Press, 2003.

18

[12] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstrac-
tion in Scheme. Lisp Symbolic Computation, 5(4):295–326, 1992.

[13] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical
analysis of C preprocessor use. IEEE Trans. Softw. Eng., 28(12):1146–
1170, 2002.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[15] Peter S. Housel. An introduction to macro expansion algo-
rithms. http://www.cs.indiana.edu/pub/scheme-repository/doc/

misc/macros-02.txt, 1993.

[16] Free Software Foundation Inc. The C preprocessor. http://gcc.gnu.

org/onlinedocs/cpp/, 2005.

[17] Martin Jambon. How to customize the syntax of OCaml, using Camlp4.
http://martin.jambon.free.fr/extend-ocaml-syntax.html, 2005.

[18] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In LFP ’86: Proceedings of the 1986
ACM conference on LISP and functional programming, pages 151–161,
New York, NY, USA, 1986. ACM Press.

[19] Thomas Mertes. Personal Communication, 2007.

[20] Thomas Mertes. Seed7 homepage. http://seed7.sourceforge.net,
2007.

[21] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, USA, 2002.

[22] John Skaller. Felix homepage. http://felix.sourceforge.net, 2004.

[23] Thomas A. Standish. Extensibility in programming language design.
SIGPLAN Notices, 10(7):18–21, 1975.

[24] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Kil-
lijian. OpenJava: A class-based macro system for Java. In Proceedings
of the 1st OOPSLA Workshop on Reflection and Software Engineering,
pages 117–133, London, UK, 2000. Springer-Verlag.

[25] Jr. Thomas E. Cheatham. Motivation for extensible languages. SIG-
PLAN Notices, 4(8):45–49, 1969.

19

